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On the Improvement of a Fully Recursive Formulation for the 
Dynamic Analysis of Multibody Systems 

Sheen-Gil Kang, Yong-San Yoon* 
Department of  Mechanical Engineering, Korea Advanced Institute of  Science and Technology, ME3022, 

Yusong-gu, Daejon 305-701, Korea 

Virtual work in multibody systems is frequently expressed as the inner product of the virtual 

displacement and the resultant force at the centroid. But provided that the resultant force is 

converted into the equipollent forces there is no restriction on where the analysis reference point 

is placed. There are basically three candidate points : the centroid, joint  point and the instant 

global origin. The tradit ional fully recursive formulation uses the centroid, but the present work 

verifies that the instant global  origin always shows better efficiency (e.g. 86~o CPU time of  the 

centroid for quarter car model) and joint  point shows the efficiency between that of the centroid 

and the instant global origin. A discussion on how important it is to define the analysis reference 

point properly in a fully recursive formulation is also presented. 
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1. Introduct ion  

The most important types of coordinate cur- 

rently used to define the motion of  multibody 

systems are joint  coordinates and the Cartesian 

coordinates. These coordinate systems each have 

advantage, but the joint  coordinate system may be 

the best choice if the simulation time is a critical 

factor. Remarkable improvements in the forward 

mult ibody dynamics have naturally come from 

the robotics applications requiring fast analysis. 

Luh and et al. (Luh, 1980) developed an efficient 

recursive O (N) algorithm for inverse dynamics of  

single open chained manipulator. This algorithm 

was reused by Walker  and Orin (Walker, 1982) 

for an O (N a) forward dynamic algorithm. Later, 

Tsai and Haug (Tsai, 1991a; Tsai, 1991b) de- 

veloped an O (N 3) algorithm for constrained multi- 
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body systems. They used two main ideas:  the 

composite body concept and a 6 dimensional 

velocity state vector at the instant global origin 

without any explanation of physical meanings. 

The composite body concept is associated with 

Walker  and Orin's (Walker, 1982) which enables 

us to construct a mass matrix of O(N 2) order 

instead of  O (N3), and the 6 dimensional velocity 

state vector is related with screw theory (e.g. 

Featherstone, 1987 ; McCarthy, 1990) that allows 

the velocity transformation matrix to be simple 

and compact. On the other hand, Amstrong (Am- 

strong, 1979) and Featherstone (Featherstone, 

1983; Featherstone, 1987) developed a fully re- 

cursive O(N)  algorithm. Afterward Bae and 

Haug (Bae, 1987; 1988) extended the algorithm 

to constrained multibody systems. But their algo- 

rithm for the centroidal reference frame is differ- 

ent from Featherstone (Featherstone, 1987) and 

Tsai and Haug (Tsai, 1991a). It is apparent that 

it is favorable to follow Featherstone's approach, 

but this fact has never been proved clearly in the 

open literature reported in the past, which mo- 

tivates this study. Featherstone emphasized only 

the concise notation without noticing the numeri- 
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cal advantages derivable from the screw notation. 
These adva~ntages grow more for closed-loop 
systems that he had not dealt with. 

The joint coordinates formulation can be im- 
proved further by several techniques such as 
sparcity of the system matrices (Negrut, 1997), 
parallel processing (e.g. Tsai, 1991b), subsystem 
technique (e.g. Kim, 1999) and so forth, in this 
study, a fully recursive formulation (Bae, 1987; 
1988) based on the joint coordinates is improved 
by applying the alternative velocity transtbrma- 
tion matrices associated with the screw theory. 
Although a fully recursive formulation may not 
always be the best choice for all types of systems, 
there is a good reason for improving this for- 
mulation since it is possible to analyze subsys- 
tems by using the same approach as an efficient 
formulation developed by Tsai and Haug (Tsai, 
1991a). This unified approach enables very large 
systems to be analyzed quickly. It is because the 
best algorithm at the boundary of subsystems can 
be selected without any overheads associated with 
switching of algorithm. 

2.  C o m p u t a t i o n  M e t h o d s  

When a body-fixed centroidal reference flame 
is moving with acceleration pc and angular accel- 

eration 6) relative to the inertial frame, the varia- 
tional Newton-Euler equations for the motion of 
the centroidal reference frame { C } (Haug, 1989), 

8rC'(mi~C-F c) +8:¢T(JC&+ t ~ j c t o -  r) = 0  (1) 

must hold for any virtual displacement vector 6'r c 
of  the centroid and virtual rotation vector 3~r, or 
more compactly, 

3Z c' (MCyC-Q c) = 0  (2) 

where mass matrix and force vector are 

MC = ( mI 0 F c 
o 

(3) 

and displacement state vector and velocity state 
vector are 

c = ( ~ r ¢ ~  y c =  
c~Z \ t ~ /  and ( ~ ) "  

If the another reference frame { P } is defined at 
a position translated by s P from the centroidal 

reference frame { C } without rotation, then the 
relation between the virtual displacement state 
vectors of  the two frames, or 

t~rC,~ = ( I  - t?rP~ 
( t ~ r /  \ 0  S;)( t?n 'P]  or 3ZC=TPc~Z P (4) 

holds and the relation between the respective 
velocity and the acceleration state vectors also 
hold as follows: 

y c = T P y P  (5) 

y C = T r ~ P + T P Y P  (6) 

Substituting Eqs. (4) and (6) into Eq. (2), the 
variational Newton-Euler equations of motion 
can be expressed for the origin of a new analysis 
reference frame { P } as 

(?Z PT (MPyP _ QP) = 0 (7) 

where modified mass matrix and force vector are 
defined as 

MP=TPTMCTP ' Q P = T  P' (QC_ MCTeye) (8) 

Here, M P Y P - Q  P is the equipollent resultant force 

vector corresponding to the new analysis point. 
In this study, we compared three basic points 

as shown in Fig. I. Joint point is not explained 
further here but will be discussed later. The tra- 
ditional fully recursive algorithm (Bae, 1987; 
1988) uses the centroid as the reference point. 

{C}:body-fixed centroklal frame 

{O }:Inertial frame 

Fig. 1 

{P }:body-fixed arbitrary frame 

~ ~ d  volume 

candidates as p 
PI : centroid 
P2: the instantly global origin 
P3: joint point 

Candidates lbr analysis reference point 
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Introducing the fully recursive algorithm, differ- 

ences in the formulation according to the reference 

point used will be discussed. 

Any multibody system can be spanned to tree 

like structure by cutting a joint  per each inde- 

pendent closed loop. If a body of a pair of bodies 

in a chain from leaf to the root is nearer to root 

of the tree, it is called the lower body, and the 

other is called the upper body. Upper body j of 

the adjacent two bodies always has a unique 

lower body and a unique associated joint  j. 

Fig. 2 shows the kinematic configuration of the 

two adjacent bodies. In the figure, lower body i is 

denoted by body j -1  to avoid confusing index i 

and j from vague printout. All  body parameters 

(e.g. centroid, joints, forced points, etc.) are 

defined at body reference frame ( Oj }. This frame 

is defined at joint  j but fixed on upper body j. 

Provided that expressions for parameter con- 

version are well defined prior to the main an- 

alysis, no restrictions are placed on where the 

body reference frame should be defined (e.g. 

centroid with principal axes of  body or inertial 

frame). But the final frame for the parameters to 

be expressed just before the analysis is the joint  

reference frame in the joint-coordinates  formula- 

tion. In order to minimize the preprocessing work 

associated with body parameters, we defined the 

body reference frames at the joint. 

From kinematics, the orientation matrix of  the 

reference frame { Oj } is obtained recursively as 

Aj  : A I C j R j  (9) 

< 
zj ,,. d yj 

x: ~ d~ t 
Body 0 - l ~ ' / s '  41o~ ' 1 " . ° -  

( 
r 'j 
/ 

rjJ-I Z~ 

body(j-I)= I ~ i f i ' i ~  
Xo 

Fig. 2 

zj YJody 

Kinematics of adjacent bodies 

where Cj is the constant orientation matrix of the 

reference frame { O~ ) to the adjacent lower refer- 

ence frame { Ol } and Rj is the subsequent orien- 

tation matrix from the reference frame { O5 } to the 

reference frame (O~ }, which is the function of 

joint  angular coordinates qff. 

The orientation matrix of the centroid is ob- 

tained as 

AC=AICjRjC c (10) 

where C c is the constant orientation matrix of  the 

centroidal reference frame relative to the body 

reference frame ( Oj }. But matrix A~ is unneces- 

sary for theoretical dynamic analysis. 

Next, the relative positions are recovered from 

the body parameters as 

sj = A l s ~  
(ll) 

pj  = A j p ~ ,  

where sj, P5 are constant vectors described in the 

body reference frames { O, ) and { O5 } respective- 

ly. 

The translation of the reference frame { O5 } 

from the initial state is recovered from the joint  
coordinates as 

dj = A , C j d ; = A I C j  (d;,0 + qjV) (12) 

where q~' is the translational coordinate of joint  j. 

The final translation of the reference frame 

{Oj} relative to the reference frame {O~) is 

obtained as 

rtj = s j  + dj (13) 

Using the recovered vectors from the body 

parameters or joint  coordinates, the origin of the 

body reference frame and the centroidal reference 
frame are obtained recursively as 

r ~ = r t + r t j  
r ~ = r ] + p j  (14) 

The velocity transformation matrices are calcula- 
ted from local matrices as 

B~O--ACC BO~ ' J -- 1 j j 
B]' =ACCjB~ " (15) 

where B]" and B~' can be obtained analytically as 

~'_ ' r :RRT1 , r , 8 . ~  Bj -O(-[RjRj]2,3, [RjR~]I,3,-L J j j,,2; / qj 
v'_ , v (16) 

Bj - OdffOq) 
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From the velocity transformation matrices, the 
relative angular velocities are obtained as 

to - B  ~°'~ ~° | J - -  j q j  (17) 

and the relative pure linear velocity due to tran- 

slational coordinates bcomes 

v~j = B~'dd' (18) 

The angular velocity of body j is obtained as 

O)j : O) |  "]- ~OlJ ( 1 9 )  

From the first time derivative of the relative vec- 
tors given by 

l~j : ~lrlj + VIi (20) 
p j  = ~ J  P j  

the linear velocity at joint j is obtained recursi- 

vely as 

I:'~ = et -t- l~j (21) 

So far, all expressions are common irrespective of 
the analysis reference point but from nowon 
differences will emerge according to the reference 

point. 

Method 1 : 
The velocity at centroid j can be alternatively 

expressed as 

1~ = ~ - -  pj ~oj :l~c -- ~ (~ + B~q~-- pjB~°~l ~° (22) 

Defining the velocity state vector at the centroid 

such as 

Y c = ( ~ c )  (23) 
\oh 

the velocity state vector relation between the 
adjacent two centroids is expressed as 

C _ _  C C C • Yj--Bj,IYI ~-Bj,zqj (24) 

where the velocity transformation matrices are 

defined as 

c ( I - - r C ~  B~,2:(B~--~jB~°~ 
Bj ' I=~0  I / '  B~ ° / (25) 

Acceleration state vector relation is obtained from 
the time derivative of Eq. (24) as 

e~ = B c l e c +  BC2~j .÷ D~ (26) 

where the velocity square term is obtained as 

DC { &' (f~ +v,j) + ~ljpj - -  P j  ((~|~)lJ +AICjB~d2 ~) (27) 
J \ ~I~j+A~CjB~'~I~ ] 

Here, B f '  is the time derivative of B f '  in Eq. (16). 
All the calculations are repeated to the tree end 

bodies of the system. 
Next, after the mass matrix and force vector are 

initialized by Eq. (3), they are transformed with 
the velocity transformation matrices Bj,1 and Bj,2 
a s  

Qja=B~a (O~-MjDj) 

Qj,2=B~,2 (Q~- MjDj) 
Mj,n---B~,IMjBj,1 (28) 

M j,21 = B~,2MjBj,1 
Mj,22: B~,zMjBj,2 

where superscript 'C'  of B, and Q is omitted for 

convenience. 
These transformed values are used to update 

the mass matrix and force vector of  the adjacent 

lower body as 

M n e w _ _ A ~ o l d ± l t / [  ]tArT ] th [ -1  AM 
1 --.LVJtl ~ IVlJ,11 - -  lYJtJ,211¥Jtj,22J-V£J ,21 (29) 

Q n e w _ _  ~ O l d  J _ / * t  A/I'T AAr--1 
- -~c~l  T ~ , j ,  1 - -  £VXJ ,21J.Vlt j , 2 2 ~ j  ,2 

and repeatedly applied until the ground is 

reached. 
Finally, from the base body to the tree end 

body, the acceleration terms are determined re- 

cursively by 

-- - -  - 1  
q j  - -  Mj,~ ( Oj ,2 - Mj,21YI) (30) 
Yj = Bj,1Yt + Bj,2~ -I- Dj 

Comments  
1. Bae and Haug (Bae, 1987; 1988) originally 

published this method. They calculated the 
inertia using Jj=(AjCC)j~(AjC~) r. After- 
ward, Tsai and Haug (Tsai, 1991a) pointed 
out that the calculation of the inertia by J j =  
Aj(C~J~C~T)A~ is more efficient than the for- 
mer version since it is enough to calculate or 

/'-~C "1[ t/-~C r directly enter ~jjj,,~j only once prior to the 
analysis. 

2. Calculations ofQaa, Mj,ll and Mj,2a in Eq. (28) 
require at least 6, 48, 6n scalar multiplications 
where n is the joint degree of  freedom, respec- 

tively. 
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Method 2 : 

In this method, the velocity of  the point that 
coincide with the global origin O at the instant 
but fixed on body j, 

r~ =#J + ~ 0 j  = f° + B} '~  + f'JB~°~ '° (31) 

is used. This point is constant with respect to the 
inertial frame but not constant with respect to the 
body-fixed reference frame. 

With the velocity state vector defined at the 
instant global origin given by 

\ ~ j  

the velocity transformation matrices are defined 
differently from Eq. (25) as 

(33) uj ,z-- \  0 B~' / 

The acceleration state vector relations are 

~ ~ = nj , l~ ' l  -[- ~ j ,2~  --~- ~ j  (34) 

where the velocity square term is 

1~ [ ~lvij + ~ahj + ~ ( ~ l j  + A~cjB~°'~I~) ( 3 5) 
\ f i ta~ +A~C~B~°'q~ ° } 

The translation from the centroid to the global 

I --r~'~ in Eq. (4) origin is sP=-- r~ ,  thus T ~ = ( 0  
I / 

Substituting T~' into Eq. (8), we obtain the mo- 
dified mass matrix and force vector given by 

1~1--- { mjI --mj~ c 
J-- \ mjr c J~-mj r~r~  ] 

(36) (FC+mjrfa~j 

\ r~ -  r~jJ~ a~j + ~  (F~ +mjffa~j) / 

Remaining steps have exactly the same forms as 
the traditional version except that Eqs. (33), 
(35), (36) take the place of  (25), (27), (3). 

Comments  

1. Velocity transformation matrix l~j,1 is the iden- 
tity matrix, so the matrix multiplications with 
Qj,1, Mj,ll  and Mj,21 become unnecessary. 

2. The calculation of  ~j  in Eq. (34) requires 6 
less scalar multiplications than in Eq. (26) 
since the calculation of Bj.l~'l becomes unnec- 
essary. 

3. Construction of  mass matrix and force vector 

in Eq. (36) requires 24 more scalar multi- 
plications than in Eq. (3). 

Loop closure constraints  

Loop closure constraints can be expressed at the 
acceleration level as 

cI~,Y, + ~I~jYj---- 7 k (37) 

where k denotes the constraint number. 
Tables 1 and 2 show the constraint Jacobian 

and the right hand side for basic constraint func- 
tions, respectively (Haug, 1989). All of  the fre- 
quently used mechanical constraints are built 
from combinations of the basic constraint func- 
tions( Refer Haug, 1989). 

If all of the constraints are initialized respec- 
tively by using tables 1, 2, they can be expressed 
compactly as 

(~Z JYj = r (38) 

where the dimension of  Eq. (38) is equal to the 
number of total constraints of the system. 

The constraint Jacobian of body j is trans- 
formed by 

~Z j,l = Q~Z jBj,I 
(39) 

(~Z j,2 = (I)z jBj,2 

Table 1 Jacobian of basic constraints 

Constraint 
function 

cI #t (al, aj) 0 - -a~l  0 --ar~j 

~fS(sl, Sj) --2DITj 2paTio1 2ptr, j --2p~j~j 

(1) S t = l ~ - r  c 
(2) l~,j=pj--pi 

Table 2 Right hand side of basic constraints 

Constraint 
function 7 
zdl (al, aj) - -a~l&~l--2  (~jaj) r(~lai) --aT&j&jaj 
~'d2(al, S1, Sj) --]~.Tj(~l~lal--2l~lT.j~tal--atT(~jSj--~lS, l) 
# ( s , ,  sj) - ~ j s~ -  ~,s, 
r ss (Si, Sj) -- 2plT, j ( ~lJSJ - -  ~ | S | )  - -  21~Jl~,j 
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and updates the constraint  Jacobian of the adja- 

cent lower body i as 

~ ? w = ~  + -~ (I)z j , 1 -  (I)zj ,2Mj,22ML2I- (40) 

Eqs. (39) and (40) are repeated from the tree end 

body to the ground. 

The effect of  each body on the reduced mass 

matrix qba of the system and the right hand side 

can be summed as 

(I:)~l =~-'~, ~JZ.],2 j ,22'q#Z j,2 (41) 
: r - -  ~ '  (~Pz j,2M;~zQj,z + ~ j D j )  

Final ly  the Lagrange mult ipl ier  ,~ is determined 

with the reduced matrix ~ba and the constraint  

right hand side ~ by 

• aA= T (42) 

Under  the constraints, Eq. (30) must be modified 

a s  

• . - 1  " T qj = Mj,zz (Qj,2 - Mj,21YI --~- (I~ j,zA) (43) 

By changing the jo in t  defini t ion frame by using 

Eq. (6) from the centroid to the instant global  

origin, we obta in  the modified constraint  equa- 

t ion as 

1 ~ |  -~-- ( I~  j ~  j = ~k (44) 

where the modified Jacobian matrix and the right 

hand side of  constraints are defined as 

(P~z, =(I~,T~ = (d~,c i --  cI~,c~C + ~I~,) 

a p ~ = ~ z j T  P=  (cl~c ', --(~jcrC-[-(~k~j) (45) 
k " " 

~ = r - @ , T ~ ,  - @ j T ~  

= r~ + ~ ,~c~ ,  + , ~ f f  ~ 

which can be calculated analytical ly in advance. 

Tables 3 and 4 show the modified constraint  

Jacobian and the right hand side of constraints 

obtained from Eq. (45). By comparing the tables, 

we can find that tables 3 and 4 can be readily 

obtained from tables 1 and 2 by replacing s and 

with p and li  but main ta in ing  others such as a, 

Pu and lb~,j as before. It can be explained by the 

fact that the posit ion vector s ( a  line vector) is 

affected by the choice of frames but the unit  axis 

vector a (a free vector) or the difference vector 

Pl,j (a free vector) of the position vectors Pt and 

pj is not. 

Al though the input  parameters into the con- 

straint functions are different, the ini t ial izat ion of 

T a b l e  3 Modified Jacobian of basic constraints 

Constraint 
function 

qbzl dPz~ 

q bdl (ai, aj) 0 - - a ~ l  0 --a?fi~ 

(I)d2 (a l ,  Pl ,  P j )  - - a T  a T~I p l  - -  Pl,j--T fi~ aT __ alTpj 

qbs (pi, pj) - I  ~i  I - - p j  

I~)ss(13t, p j )  --2plT, j 2 p T j p l  2plT, j - - 2 p ~ j ] ~ j  

T a b l e  4 Modified right hand side of basic con- 
straints 

Constraint 
function 

7dl(a, aj) --a~&~d~aj--2 (&jaj) ~(t~a~) -a~r~j&jaj 
?,~2 (as, p~, p~) - p~j &, & ~a~ - 21b~j ~ a ~  - aT ( ¢bj lbj --  ~ db~) 

7~ (Pi, pj) - ~ l b s -  ~,tii 
,yss (p , ,  p j )  - -  2DIT, j ( ~j l~j  - -  ~l l~,)  - -  21)IT, jI~I,j 

constraints is the same as the original  version and 

the initialized constraint  equations are expressed 

a s  

~-],dOzj'~j = ~ (46) 

Eqs. (39) -- (43) can be reused but  the calculat ion 

of ~bzj,1 in Eq. (39) is unnecessary at this time 

because UJa is the identity matrix. 

3. Results 

However carefully implemented element by el- 

ement the t radi t ional  version is, it requires at least 

3 6 + 6 n  more scalar mult ipl icat ions for each body 

than the new version where n is the degree of 

freedom of the associated joint.  

Furthermore,  for the c losed- loop systems, 

modified constraint  Jacobian matrix and right 

hand side have the same form as the t radi t ional  

version but the t ransformation of the constraint  

Jacobian matrix related with Bj,1 becomes unnec-  

essary in the new version. Thus we can verify that 

the new version can save 6m scalar mult iplica- 

tions for each body where m is the number  of 

constraints. 
Fig. 3 shows the suspension system of a car that 

consists of 6 bodies ( including a fixed chassis) 

and 1 spr ing-damper .  This system is modeled 

with 10 jo in t  coordinates by cutt ing 3 spherical 
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Table 5 Elapsed CPU time for dynamic analysis of 
a chassis fixed quarter car model 

Centroid Instant global origin 

CPU Time 0.50msec/frame 0.43msec/frame 
Ratio 100% 86% 

~Chassis J 

\ / ~ ~  :U niversal joi nt 
S:spherical joint 

U ~ v /  T:Translatinal joint 

Fig. 3 Chassis-fixed quarter car model. 

joints ( m = 9 ) .  For  this example, 108 scalar mul- 

tiplications are saved for each body with spheri- 

cal joint  ( n = 3 ,  m = 9 ) .  Elapsed time is checked 

by simulating ten-thousand cycles under the 

gravity field. Table 5 shows the elapsed time per 

cycle on an Intel Pentium CPU. From the result, 

we can find that the fully recursive formulation 

can save 14% CPU time of  the original version 

for a chassis-fixed quarter car model without 

much modification. 

4. Conclusions 

In the tradit ional fully recursive algorithm, the 

velocity transformation matrices transform the 

velocity in the joint  coordinates into the Car- 

tesian velocity at the centroid. On the other hand, 

in this study, we improved the fully recursive 
algorithm by using the alternative velocity trans- 

formation matrices transforming into the Car- 

tesian velocity at a point fixed on the body but 

identical with the global origin at the instant of 

calculation. Except that the mass matrix, force 

vector, Jacobian matrix etc. are initialized differ- 
ently, all of the remaining steps are exactly the 

same as the traditional version. But from this 

minor change, the fully recursive formulation can 

save at least 36-1-6nq-6m scalar multiplications 

per body where n, m are the joint  degrees of 

freedom and the dimension of  related constraints. 

Simulating on an Intel Pentium CPU, the new 

version achicved 14% saving of the CPU time for 

a chassis-fixed quarter car model. 

In addition to the centroid and the instant 

global origin, we tested joint  point as the analysis 

reference point and it turned out that this point 

has the middle efficiency. 

In conclusion, the new version based on the 

instant global origin as the analysis reference 

point is recommended because it always achieves 

better efficiency compared with the traditional 

version based on the centroid. If this new version 

is encapsulated in the subsystem-oriented module 

with other algorithms, it is expected that large 

systems can be analyzed in the fastest way by 

selecting the best algorithm without any com- 

putational overheads associated with the swit- 

ching of analysis algorithms. 
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